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We present a model and an algorithm for the calculation of a strongly exothermic 
reaction with a change in volume. We give examples of numerical calculations of 
the basic characteristics of a layer. 

Investigators are drawn, more and more, in the solution of energy problems to questions 
relating to the catalytic oxidation of the simplest hydrocarbons (see [I, 2]). These reac- 
tions are characterized by a significant liberation of heat and a pronounced change in volume 
during the conversion of the initial materials into the reaction products; this leads to a 
change in the flow rate and, as a consequence, to variation in the hydrodynamic parameters 
over t~e length of the catalyzer layer. The methods of calculation, customarily adoped, in- 
volving an averaged rate of motion may, therefore, yield invalid results. 

In the present paper we consider the reaction of catalytic oxidation of hydrocarbons, 
which canbe represented roughly in the form 

nlAl§247 

where A I is the hydrocarbon being oxidized; A 2 is the oxidizer (for example, atmospheric 
oxygen); A 3 and A t are the reaction products; nj is the number of moles of the j-th reaction 
component. 

i. Mathematical Description. A mathematical model of the process in a one-dimensional 
setting includes the material balance equations for each component and the momentum and 
energy equations for the gaseous mixture and catalyzer: 

d 
d l  (piv)= vjW1, ] =  1, 2, 3, 4, (1)  

G do = dP Ffr, (2) 
dl dl 

GCv dr do + Ff r o, (3)  
dl - -  "r ( o -  T)  - P dl 

O~ 0~O 
e,~p,,C,, - -  = ~=,~ - -  - -  r ( O  - -  T )  + W ~ Q .  

at  a l ,  

For c l o s u r e  of  t he  sys tem ( 1 ) - ( 4 )  we use  t he  e q u a t i o n  of  s t a t e  

p = pRInT, 

4 4 

where i p = ~ p~; R m - ~ y~R~, Rj == R/M~. 
i=I /=1 
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Ordinarily, in chemical reactor calculations no account is taken of the effect of a 
change in pressure and speed of the flow along the length of t:he apparatus on the speed of 
the chemical conversion, the temperature in the apparatus, and the transport process. The 
present system of equations allows one to make estimates when such simplification is admis- 
sible. For this purpose we obtain explicit expressions for the determination of dP/ds dv/dg, 
dT/ds in terms of the parameters of the model and we present them in a dimensionless form: 
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Here q = t/L; k = Cp/Cv; St = a/pCpv; M 2 = v2/c2; c 2 = kRmT; ~ = P/P0 ~ = v/v0; Wl 4 
klpylP; k I = k01 exp (-E/RO): ylP = y1~/(kl + 8); $' = (i/r - ~)/Re + 0.4]. 

From equations (8)-(10) it follows that changes in the pressure, speed of the flow, and 
temperature of the flow occur at the expense of a change in the number of the moles in the 
chemical reaction, heating of the flow at the expense of convective heat exchange and phase 
friction. 

We now estimate the order of the terms appearing on the right sides of the equations, 
whereby we restrict ourselves to the case most typical for chemical reactors, namely, 
M 2 < <  i, Re ~ i00, E ~ 0.4, k = 1.4, 0 and T ~ 1000~ 

We transform some of the terms on the right sides of the equations: 
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where &Yl i s  the  change in c o n c e n t r a t i o n  of  t he  r e a c t i n g  component a long the  l e n g t h  of  the  
l a y e r ;  &n i s  t he  change in the  number of  moles as a r e s u l t  of  the  r e a c t i o n .  

We now r e w r i t e  the  system of  equa t ions  ( 8 ) - ( 1 0 ) ,  t a k i n g  in to  account  e s t i m a t e s  of  the  
o rder  of  the  q u a n t i t i e s  appear ing  o n t h e  r i g h t  s i d e s  of  the  e q u a t i o n s :  
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(I: chemical reaction; II, interphase heat exchange; III, phase friction). 

Analyzing this system, we make the following conclusions. 

i. Pressure change along the catalyzer layer is mainly due to phase friction, i.e., 
only the last term is important in Eq. (8). 

2. For small speeds of the reacting mixture the variation of ~ is determined through 
convective heat exchange among the phases and by the variation in the number of moles as a 
result of the chemical reaction; for flow speeds greater than about i0 m/sec it is necessary 
to take into account phase friction. For catalyzer layers of sufficient extent or large 
specific surface the effect of a change in the number of moles on v can prove to be negligible. 
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3. In the thermal balance equation we can neglect the contribution of energy due to 
phase friction. Variation in temperature along the length of the layer is determined by heat 
exchange with the catalyzer and, in the case of a change in the number of moles, by the chemi- 
cal reaction. The influence of the latter is important either only for large An or for in- 
tensive processes taking place over short layers of catalyzer. 

The situation in which variation of v and T is deter_mined through heat exchange with 
the catalyzer is of special interest. In this case dln v/dN = dln T/dN, i.e., the speed of 
the flow in the catalyzer layer can be calculated in terms of the known temperature distribu- 
tion. A situation of this kind is usually accepted without proof when chemical reactor cal- 
culations are made. As follows from these estimates, this holds only for a definite rela- 
tionship among the parameters of the mathematical model. 

To illustrate these results we carry out a numerical analysis of the complete system 
of equations (1)-(7). Since for problems of this kind the computational scheme and algorithm 
are, to our knowledge, not available in the literature, we shall dwell on them here in some 
detail. 

2. An Algorithm for the Solution. We obtain difference schemes approximating the 
momentum, continuity, and thermal balance equations upon integrating the equations (1)-(3) 
from s to s and also applying the Newton-Leibnitz formula and the mean value 
theorem: 

1i+1/2 li+l/2 
g ( l ) d l =  g( lO S dl. 
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Since the values of the variables at the resulting nodes are not known, for a positive flow 
rate the values at the points s163 and s "carry over" into the points s and s 
respectively [3]. Carrying out these procedures, we obtain the following difference equa- 
tions: 

(pjV)i'-- (pjV)i_ 1 = Wji_lhi, ] = I, 2, 5, 4, (ii) 

G (Vi " Vi-1) = Pt-* - -  P i ' - -  ~Ghtvi/2, ( 12 ) 

6Cv ( T , -  T,-1) = ~hi (O~ +l - -  Ti) - -  Pi (vi - -  v,-O + (F ~)~_toih i, (13 )  

where v i, Ti, oim+1, Pi are the values of the flow rate, the gas temperature, the cata- 
lyzer temperature, and also the pressure in the apparatus on the (m + l)-st time layer, 
respectively; ~i = (hi + hi-l)/2; Wji = vjWli- 

The data in this scheme are conservative since they reflect the basic properties of a 
cons medium. The difference equations (11)-(13) approximate the initial system of dif- 
ferential equations with first order of accuracy in the spatial variable s and they guarantee 
conservation of the mass outflow G. 

The difference scheme for equation (4) is formulated by a well known method (see [4]): 

~p~C~ OT+~-'O7 ~" ~+i- ~ ~ -- ~-~ (14) 
x = hi h~+x hi ". q-" (W1Q)I - -  ~ (07+* - -  T~). 

In the system of difference equations (11)-(14) the values of the variables at the i-th 
point in the (m + l)-st time layer are not known. We effect the solution in the following 
order: first, with the aider the driver method we calculate the catalyzer temperature, and 
then determine the values of all the flow variables with the help of an algorithm for the 
reduction of the system (11)-(13) to a quadratic equation in v i and the selection of one of 
the roots of this equation. With the value of the speed known, determination of the remaining 
variables offers no difficulty. 

Since the values of the catalyzer temperature and of the flow in the term ~(Oi m+1 - Tim) 
in the equation for the catalyzer temperature are taken from different time layers, it is 
necessary to organize the iterations. In solving the equation (14) a time step is chosen in 
an automatic way by comparing the results over a whole step and two time half-steps. After 
this we make a correction in accordance with Richardson's scheme, which enables us to increase 
the accuracy of the approximation with respect to the time to O(~2). 

We proceed now to a detailed consideration of the algorithm for solving the system of 
equations (11)-(13). We rewrite the continuity equations and also the value of the pressure 
P at the i-th point in the following form: 
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p~ = al~/v~, (15) 

~ 4 T~ B~ 
P, = ~ 9~R~T~ = (~,=~. al~R~ ) v~ - --v~ T~, (16) 

4 

where al~ = pi~-lv~-lq-WJi-l~i; B~ = ' ~ a l ~ R j .  
i=l 

Using t he  e q u a t i o n  (15 ) ,  we can r e a d i l y  o b t a i n  an e x p r e s s i o n  f o r  T i in  terms o f  v i from 
t h e  d i f f e r e n c e  e q u a t i o n  (13 ) :  

Ti = v~ [GCv T~_I § ?h~OT+' + (Ffr)i-ltiviI (17) 
vi (6Cv + V~i) + Bi (vi -- %-0 

From equations (16) and (17) we obtain an expression for Pi in terms of vi: 

P, = (Siv~ + S~)/(Zlv~ + Z~), (18) 

where $I= Bi(Ffr)i-lfii; S 2 = Bi(GGyTi- I + 7~iGim+1); Zx = GCv + 75i + Bi; Z2 = -Bivi-~" 

Substituting the values of the pressure from equation (18) into the momenum equation 
(12) and simplifying, we obtain a quadratic equation in the vi: 

a~v~ + b~vi + ci = O, 

where a i  = GZI(L + ~f i i /2 ) ;  c i  = $2 - Zz(P i -1  + Gv i -1 ) ;  b i  = S1 + a iZz /Z1  - Z l (Gvi -1  + P i - 1 ) .  
We write the roots of this equation in a form yielding minimum roundoff error in the calcula- 

tions: 
--2c~ 

( v 0 ~ , ~  = 
bi =h V" b ~ -  4aic~ 

The c h o i c e  of  s ign  f o r  t he  r o o t  h e r e  i s  based on t he  c o n t i n u i t y  of  t h e  s o l u t i o n  v i ( ~  i )  as 
a f u n c t i o n  o f  ~i" A c t u a l l y ,  l e t t i n g  fii + 0 in  e q u a t i o n  (12 ) ,  we s h a l l  have 

G (vi -- vi-1) = P~-I -- Pi. (19) 

If we rewrite the equation of state (5) in the form P = GRmT/v and substitute the resulting 
expression for P into equation (19), we obtain, after simplifications, a quadratic equation 

for the vi: 

v~ --  [Vi-1 + RmT~-l/v~-x] vi if" P,m T, = O. (20) 

Providing we have continuity of the temperature T i = Ti_ ~, the roots of the equation (20) 
have the form 

! v (vi):.2 = ~- ( i-: q- R w Ti-:/v~-: +-- ]/(vi-~ -- R mTi_l/V~_:) 2 ). (21) 

From equation (21) it is easy to see that if vii_l > RmTi- I, then (vi) 1 = vi_ I, (vi) 2 = 
2RmTi_l/Vi_l, and if vii_l < RmTi_ I, then (vi) I = 2RmTi_i/vi- I, (vi) 2 = vi- I. Noting that 
RmT = P/p, we formulate a simple rule for the choice of sign: if vii_1 > (P/P)i-~, choose 
the + sign; if vii_~ ~ (P/P)i-~, choose the - sign. 

The algorithm we have described for solving the nonlisear system of difference equations 
(11)-(13) is iterationless and exact. We used it on the BESM-6 computer employing FORTRAN-4 
computer language. 

3. Results of the Numerical Analysis. In Figs. 1 and 2 we display some of the results 
from our calculations based on the algorithm described above. In our example we chose a 
reactor with hn = 0.4 and LS = 120. In accordance with the estimates presented above, the 
friction in this case is the main influence on the distribution of the pressure over the 
layer, while the heating up of the catalyzer and the change in the number of moles as a 
result of the reaction affect the distribution of temperatures and flow speed. This leads 
to the fact that the quantitative regularities in the variation of the rate of flow and its 
temperature are not alike (see Fig. i). 

Figure 2 sho_ws a comparison of the drops in pressure calculated from the mathematical 
model and the AP determined from the formulas given in [5], the latter being obtained in 
the absence of a chemical reaction. As can be seen from the figure, the agreement of the 
results is fairly good, testifying to the validity of our estimates. 
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Fig. i. Stationary distribution of dimen_sionless flow temperature T, 
catalyzer temperature O, and flow speed v along t_he length of the 
catalyzer layer: curve I) T = (T - T0)E/RT~; 2) O = (O - T0)E/RT~; 
3) v = (v/v0)10 (To, . reference temperature; v0, reactor inlet flow 
speed). 

Fig. 2. Pressure drop AP, referred to t_he reference pressure, as a 
function of the reduced mass flow rate G = G/G 0 for various grain 
sizes: curves labeled i, 2, and 3 are for d3/d I values of i, 0.65, 
and i~3, respectively; G o , fixed mass flow rate; points shown are 
for AP calculated from formulas in [5]. 

NOTATION 

t, time; s length; ~j, stoichiometric reaction coefficients; pj, p, density of the j-th 
compnent and of the mixture, respectively: CV, Cp, gaseous heat capacity at constant volume 
and pressure, respectively; v, flow velocity; G, mass flow rate; W z, reaction rate; P, pres- 
sure; $, resistance coefficient; Ffr, interphase friction force = SGv/2; T, 0, flow and cata- 
lyzer temperatures, respectively; EK, PK, CK, fraction, density, and heat capacity of the 
catalyzer, respectively; ICK, coefficient of thermal conductivity on the layer; Q, thermal 
effect of reaction; Rj = R/Mj; R, universal gas constant; Mj, yj, molecular weight and weight 
concentration of j-th component; Rm, gas constant of mixture; S, specific surface of 
layer; M, Re, St, Mach, Reynolds, and Stanton numbers, respectively; c, sound speed; L, 
apparatus length; =, 6, coefficients of heat exchange and mass exchange, respectively; 7 = 
~S; Ten, flow temperature at entrance to layer; E, activation energy; k01 , preexponent; ~, 
voidage; ~, hi, reactor time and space steps. 
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